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1. INTRODUCTION

In the past, dynamic behavior of periodically laminated medium has been studied
extensively. A review of the literature on exact and approximate analyses of this
problem can be found in [1,2].

The corresponding problem of a plate of finite thickness having a large number
of periodic anisotropic layers has not received much attention. In [21 a stiffness
method was presented for studying harmonic wave propagation in a periodically lam-
inated infinite medium. This method is also well suited for analyzing a finite thick-
ness plate with many layers. In this approach each lamina is divided into several
sublayers and the displacement distribution through the thickness of each sublayer is
approximated by polynomial interpolation functions in such a way that displace-
ments and tractions are continuous across the interfaces between adjacent sublayers.
Details of the method can be found in [2,3]. Here we summarize the pertinent equa-
tions and present numerical results showing the effect of soft interface layers between
reinforced laminae on the dispersion of guided waves.

The particular systems considered are a single ply (0) and a cross-ply
(0 /90 /0 ") laminated plate. Each lamina is assumed to be reinforced by continu-
ous aligned fibers, so that it can be modeled as a transversely isotropic medium with
the symmetry axis aligned with the fiber direction. The geometry of a typical cross-
ply laminate is shown in Fig. 1, which also shows thin interface layers between adja-
cent laminae. We have also considered the case when all the fibers are in the same
direction (not shown). Although it is possible to derive an exact dispersion equation
for propagation of harmonic waves in the plane of the plate, the equation is rather
complicated when the number of layers is large. This equation simplifies for propaga-
tion in the 0 " and 90' directions when one also considers small number of layers. -------
In this paper we have considered a five layered plate: three reinforced layers of the
same thickness and two interface isotropic soft equal thickness layers. Results are
presented using both an analytical technique and the stiffness method.
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Fig. 1. Geometry of the laminated plate with interface layers. m is the total number
of layers (mwi).

2. GOVERNING EQUATIONS

We cons id er time hamonic wave propagation along the x or y axis. Because of sym-
metry the problem reduces to two uncoupled ones: plane strain in which the dis-
placement components are ux, o, u, and SH when the only- nonzero displacement
component is u. In this paper we consider only the plane strain case.

2.1 Stiffness Method

Consider the ith lamina bounded by z=zij and =zj. The stress strain relation in
this lamina will be given by

n 4 0,, p l g y e
411110 0 Cj"

where au and u are the stress and strain components, respectively, and we have writ-

ten t.=2e,. Note that if the y axis is the axis of symmetry, then

Then the problem is equivalent to that of an isotropic one. In order to get good
numerical results each lamina will be divided into several sublayers, p, say. Within
the ith sublayer we will choose a local coordinate with the origin at the mid-plane
and xj, yj, zj, parallel to the global xyz axes, respectively. Let 2hj be the thickness of



this sublayer. Denoting uO) to be the displacement at a point in the jth lamina we
write

=10 -U.4 + ujf2 + - ~ f3 + -X Lf (2)

up) = W41f + Wjf 2 + -R 2:n~ Ix fJ +~ 1 ' aW x1 jf

where f. (n=1,...,4) are cubic polynomials in the local coordinate zj given by

f,= - (2-3j + Y3), f2 = I (2+3 j - i7)

h 2  h.f3 =-'a-(1-f/j - 17J2 + 17PS,, =h ( 17rj +t 17J2 +I qjS)
4 4

Here ij=z/h j and u, wj, xj, aj are the values of u., u., a,, and o. at the jth node.
These nodal values of the displacement and traction components are functions of xj
(=x) and t. In this paper it will be assumed that the time dependence is of the form
e' t, w being the circular frequency. The factor e - k will be dropped in the sequel.

The equations governing the nodal generalized coordinates {uj, xj, wj, oj} are
obtained using Hamilton's principle. The details can be found in [3]. It is found
that, if {Q} is the vector of all the generalized coordinates, and if we assume for {Q}

the form

{Q}={Q }e '  (3)

then {Q } satisfies the equation
-o

(k4[KJ -_ i[K] - k2 [K I+ ik[KI + [K]) {Q} =0 (4)
-1 ~2 -3 -4 -5 _0

Matrices [K j, etc., have been defined in [3]. [K 1, [K1, and [K] are linear in w2.

-13 -4

For nontrivial solution the determinant of the coefficient matrix must be zero.
The solution to this equation provides the dispersion relation between k and w.

2.2 Exact Solution

Consider wave propagation in one of the layers along one of the principal directions
as described above. Then we may assume that

U U1(zj)ei - A (5)

UP) = U$(zi)e - 'it

Further, if we let

n+" = A'e - * ' + A"e"I' (6)

(I = A'e -  A -A"e 's

N
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n+ = B'e - A + A

III = B'e-*A - B"eim
lg

then we may write

= V,'n+ + V "1 (7)

U3 = v3.(11 + v3-112

Here the constants V ' V1", V3', and V3" may be taken as
kO-ka-9 (8

V= ik, V3' = s(8)

V"= -iS, V3" = ik

s2 and 3 are given by

2 = " - (k2-t-kl('+ ))±{(k" 1-k2(1+p))2-4#(k '- k (k '- k ca)} '12 (9)

In the above we have defined

a = c21c/c # = cV/c V- k2-pW2/C

Note that if the y-axis is the symmetry axis then

In that case the solution is the same as that for an isotropic medium.

Using the solution given by equations (7) and (6) and applying the appropriate

boundary conditions of continuity of tractions and displacements at the interfaces

between the layers, and the traction-free boundary conditions at the free surfaces of

the plate, one arrives at the dispersion equation governing k and w. For the sake of
brevity details will be omitted here.

3. NUMERICAL RESULTS AND DISCUSSION
As an application of the techniques described above, we consider a fiber-reinforced
plate when the fibers are aligned with the x-direction (0'). Properties of the plate
are given in Table 1.

Table 1. Properties of 0" and 90 laminae, and the interface layer. All the

stiffnesses are in the units of 101N/m 2

X pg/cm s) ell C'n C12 C44 css

0O* lamina 1.2 1.607/3 0.1392 0.0644 0.0350 0.0707

Interface 1.8 0.0865 0.0865 0.0475 0.0195 0.0195

90'* lamina 1.2 0.1392 1.6073 0.0644 0.0707 0.0350



Figure 2 shows the real and imaginary branches of the frequency spectrum for
propagation in the x-direction. Solid lines in this figure are the results of the numeri-
cal method and the open circles and x's are the exact solutions. Note that the two
agree very well. It is seen that as k-.oo the slopes of the first symmetric and
antisymmetric modes tend to the ratio VR/ V'c 7 p where V R is the Rayleigh wave
velocity in the x-direction. Results by the stiffness method were obtained using 15
sublayers.
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Fig. 2. Dispersion curves for the real and imaginary wave numbers. x: symmetric

and o: antisymmetric modes. fl= wH and -r--, H being the thickness of

the plate.

To examine the effect of the interface soft layers we then consider a plate com-
posed of three equal thickness unidirectional (0 ) fiber-reinforced layers separated by
two thin soft layers. Properties of each layer are as in Table 1. Figures 3a-3c show
the dependence of the phase velocity in the x-direction on the frequency when there
are no interface layers and when the ratio of the thicknesses of an interface layer and
a lamina takes two values, 0.1 and 0.2. It is seen that the presence of the soft inter-
face layers is to lower the cut-off frequencies and the phase velocities. Also it lowers
the surface wave velocity. The results shown in Fig. 3 are obtained using the exact
solution.
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Fig. 3b. Variation of c with 2kH when the interface layer thickness ratio is 0.2.
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Using the stiffness method we also studied the dispersion of guided waves in a
0* /90' /0' laminated plate with interface layers. Fig. 4 shows the frequency-wave
number dependence when the interface layer thickness is 0.1. These curves are quite
different from those shown in Fig. 2. To examine the behavior of the fist three
branches in more detail we show in Fig. 5 l= Wh_ vs. k  It is

2r./(Css/P) 2i,
interesting to observe the slowing down of the waves as the wavelength becomes of
the order of the interface layer thickness.
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Fig. 4. Dispersion curves for a 0 /90 /0 plate with soft thin interface layers.
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Fig. 5. First three real branches of the frequency spectrum for a 0*/90*/0* plate
with soft thin interface layers.

4. CONCLUSION
'i', Dispersion of guided waves in a fiber-reinforced laminated plate with or without soft

interface layers between the laminaerz bee'studied qwrb using an exact method of
solution and an approximate stiffness method. It is shown that the approximate
numerical method provides a solution that agrees very well with the exact solution.
The advantage of the approximate method is that it is easily used for any number of
laminae with arbitrary properties. The results for a laminated plate with soft inter-
face layers show significant lowering of cut-off frequencies and phase velocities. Velo-
city of surfa e,wav is found to decrease with increasing interface layer thickness.
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